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Abstract 
Basic recurrence plot analysis has been extensively used as a technique for 
characterising financial time series. In this paper we examine recurrence plots of 
two of the most fundamental processes, i.e. the white noise process and the 
Wiener process. These recurrence plots are also used to ‘catalogue’ typical 

behaviour for different time lags for these two processes. The graphs are then 

used as a template to compare the recurrence graphs of the returns on eight real-

life data sets taken from the NYSE.  
Keywords: VRA, visual recurrence analysis, recurrence plots, non-linear time series 
analysis, deterministic systems 
 

1 Introduction 

Rescaled range analysis and recurrence plots are some of the techniques that 

have been introduced over recent years for characterising financial time series. 

Today, primarily thanks to various software packages freely available from the 

Internet, these techniques are more accessible than ever before. In this paper we 

used a package called VRA (Visual Recurrence Analysis), created by Eugene 

Konov [5]. Interpretation of the results is somewhat arbitrary, making it more of 

a qualitative than a quantitative tool. However, the rationale behind such an 

analysis is highly rigorous and offers a number of benefits obscured by other 

more ‘quantitative’ techniques. The intentions of this paper are to explore 

whether, by extending the knowledge of time series characteristics, the results 

gained could later on be exploited to produce more accurate forecasts.  

 

Recurrence analysis, as a method for identifying hidden patterns and revealing 

non-stationarity, was introduced by Eckmann, Kampshort and Ruelle [2]. The 



method is used for visualising and studying system phase space orbits. The logic 
of the method is very intuitive. Dynamical systems are often represented as 
series of differential equations, each containing variables that can define the state 
of such a system. However, in real life the best we can often do is to get a single 
function describing the movements of a system. Despite the fact that state 
variables are not known, by calculating the derivatives of this single function, we 
can create equations of motion. These equations generate the space that is related 
to the original space where the actual system resides. Takens [11] proved that the 
whole process could be simplified even further. The dynamics on the attractor of 
the underlying system are topologically equivalent to those of a state space 
system created from a single observable variable. This means that it is possible 
to reconstruct a topologically equivalent picture of the entire dynamical system 
(hidden and otherwise unobservable multidimensional space) from a single time 
series. The way of achieving this is via embedded delayed coordinates. 
 

2 Objectives 

This paper intends to provide a brief overview of how recurrence plots are 
rendered and how colours can be used to construct a richer visual environment 
for interpreting time series. Several well-described processes will be catalogued 
on an ad hoc basis, depending on the characteristics of the embedding space and 
the corresponding visual appearance. This approach to analysis will be extended 
to several real-life financial time series, namely closing minute and daily stock 
values from New York Stock Exchange (NYSE). The intentions are to establish 
whether coloured recurrence plots can be used to classify and characterise time 
series.  
 
In order to facilitate this characterisation, both the minute and daily, as well as 
short and long stock returns, will be compared. Their recurrence plots will be 
examined and compared with the ad hoc classification of the systems previously 
analysed. The ultimate objective is to establish whether visual recurrence 
analysis can provide a clue regarding the presence of deterministic, possibly even 
chaotic, movements in financial time series. 
 

3 Recurrence plots 

In order to create a phase space from a single variable, observations from the 
time series need to be turned into vectors Yt. This is easily achieved in the 
following fashion: 
 

   Yt = (xt, xt+τ, xt+2τ, …, xt+(m-1)τ)            (1) 

 

 



Where, 
xt = time series observations  τ = time delay (sampling time) 
t = units of time    m = embedding dimension 
 
A sufficient number of vectors Yt create a phase space that is topologically 
equivalent to the original, unobservable multidimensional space that hosts the 
underlying system. In a way, the observed time series is just a projection (an 
output) of this underlying process (system) into a time window. Once the system 
has been reconstructed it is possible to analyse the properties of such systems, 
otherwise hidden in the time window. 
 
The real difficulty is in deciding how to define the vectors that create this space. 
From the formula in eqn. (1), we can see that only two parameters will define 
every vector. These are m, the embedding dimension and τ, the time delay. Both 
parameters need to be estimated as precisely as possible. A reconstructed space, 
in order to be representative, must have the correct embedding dimension, more 
specifically this is only possible if m ≥ 2n+1, where n represents a number of 
variables (or degrees of freedom) of the dynamical system [1]. The correct value 
of m is established via the false nearest neighbour method (for details see [9]). 
Incorrect selection of m leads towards a space where the topological structure is 
no longer preserved. The time delay τ (sampling time) serves the same purpose 
as the embedding dimension and an incorrectly defined sampling time will affect 
the reconstruction of the attractor. The simplest way to determine the optimal 
value of τ is either via the autocorrelation function or, preferably, the mutual 
information function [4]. 
 
Once the vectors are calculated, a space can be reconstructed and a number of 
system invariants can be measured (the correlation dimension, maximum 
Lyapunov exponent, etc.). However, rather than taking this analytical approach, 
a simple recurrence plot can be constructed. Recurrence plots display distances 
between vectors and, if those distances are below some threshold value, the point 
is marked. Depending on the application, the distances can be shaded, or colour 
coded. Such plots provide a very intuitive and easy to use tool for studying the 
motion of the system trajectories. A general rule that applies is, the more 
deterministic the signal, the more structured the recurrence plot will be. 
     

4 Time series description 

To explore the descriptive and analytic capabilities of this approach to analysis, 
eight real-life financial time series and four artificially generated series were 
selected. The real life series are stock movements taken from the New York 
Stock Exchange. The series are daily and minute closing values for BP, IBM, 
Coca Cola and Pfizer (Tickers symbols: BP, IBM, KO and PFE). The details for 
all eight series are given in Table 1. All minute data cover Monday to Friday 
intra-day trading from 09:30-16:00. 



Table 1:  Four financial time series from the NYSE selected 
for analysis 

 
 
 
 
 
 
 
 

 
 
 

 
 
However, rather than analysing the closing values of the stocks, the return values 
were calculated. If a stock price, at any point in time, is defined as Xt and ∆t is a 
change in time, then the price change is calculated as: 
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As Zt/Xt ≈ log Xt+∆t - log Xt , if Zt/Xt is small, the value of Rt can be more 
efficiently expressed as: 

t
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This was the method adopted for calculating returns. Specific returns calculated 
in this paper applied to lags 1 (short returns) and 1,000 (long returns). In the 
context of daily returns, 1,000 lags covers a period of 2.7 years and in the 
context of minute returns, 1,000 lags covers 16.7 hours, i.e. approximately 2.5 
trading days. 
 
The four artificially generated series were: a white noise process, a Wiener 
process (Brownian motion with Markov characteristics, often called fractional 
Brownian motion), a sinusoid and the Lorenz attractor. For all four series more 
than 5,000 observations were generated. The white noise process was generated 
on Excel using the RAND() function. The Wiener process was generated as an 
integrated white noise process. The sinusoid series that was generated was 
periodic every 101 observations and the Lorenz attractor was generated using 
difference equations (only ‘x’ variable evolving in a time window has been used) 

with the following parameter values: 

 

dx/dt= -10(x +y)             (4)   

dy/dt= 28x -y -xz             (5) 

dz/dt= -8/3z +xy.              (6) 

 

Stock values BP IBM Coca Cola Pfizer
Daily closing values

Start 3-Jan-1977 2-Jan-1962 2-Jan-1970 4-Jan-1982
Finish 9-May-2003 9-May-2003 9-May-2003 9-May-2003

No of observations 6653 10405 8423 5391
Minute closing values

Start 22-Apr-2003 22-Apr-2003 22-Apr-2003 22-Apr-2003
Finish 5-May-2003 5-May-2003 5-May-2003 5-May-2003

No of observations 5458 5862 5473 5473



For these four simulated series, artificial ‘returns’ (i.e. differenced values) were 

also calculated for identical time lags as for the stock exchange data, i.e. for 1 

and 1,000 lags. 
 

5 Recurrence plot analysis 

The closeness of vectors in the phase space was shaded in accordance with the 

scheme shown in Fig. 1. Distances displayed as 0.00 for white and 0.04 for black 

varied from series to series and from global to local measurements. The metric 

used was the Euclidean distance. 
 

 
Figure 1: Colour map for marking vector distances 

on the recurrence plot 
 
 
According to this map, the closer the two vectors on the recurrence plot, the 

whiter the shading. The white diagonal line, visible on some plots, represents the 

line of identity, i.e. every vector measured against itself. The recurrence plot, 

therefore, consists of two mirroring sections divided by the identity line that 

flows from the bottom left to the top right corner. 

 

Fig 2a below shows a typical recurrence plot for a white noise process and Fig 

2b a typical random walk (Wiener process) recurrence plot. Both plots, although 

rich in texture in a different way, represent typical visual signatures of these two 

processes. However, as expected, neither of them appears to contain any 

regularity. 
 
The recurrence plot of the Lorenz attractor in Fig. 3a, on the other hand, shows 

some regularity. These regularities are also preserved if very long differences are 

calculated. The sinusoid in Fig 3b shows exactly the same characteristics. As a 

matter of fact the plot for the original time series is indistinguishable from the 

plot for the series containing long differences. 
 

    
a.     b.  

Figure 2: A White noise (a) and the Wiener process (b) 



It was indicated earlier that plots based on the correct time delayed embedded 
coordinates might produce patterns that are not normally visible in the series and 
which could provide clues to search for the presence of deterministic chaos. To 
illustrate this, Figs 4a and 4b display recurrence plots for the Lorenz attractor 
and the sinusoid, each presented at the appropriately calculated level of m and τ. 
 

    
a.     b. 

Figure 3: The Lorenz attractor (a) and a sinusoid (b)  
 
     
As we can see, the plots enhance the features we anticipated to find. The Lorenz 
attractor shows a stream of light lines parallel with the identity line. These lines 
indicate the presence of unstable periodic orbits. The sinusoid plot clearly 
confirms the periodicity of the sinus waves, which corresponds with every light 
line parallel with the identity line (the first light line parallel with the identity 
line starts at vector 101, corresponding with the periodicity of the original 
sinusoid). 
 

    
a.     b. 

Figure 4: Lorenz attractor m=2, τ=16 (a) and 
Sinusoid m=2, τ=25  (b) 

 

6 VRA plot analysis 

To illustrate the difference, recurrence plots for the financial time series that we 
selected from the NYSE were produced. Fig. 5. No matter which series were 
picked, the plots looked very similar. The first plot (Fig. 5a) is typical of all eight 
examined short return (lag 1) series. The middle plot (Fig. 5b) is a typical 100 
lag return series and the right one (Fig. 5c) is a characteristic 1,000 lag return 
series. Interestingly, the plots are very similar for both daily and minute returns, 



confirming that the financial series returns seem to be insensitive to sampling 
frequency. 
 
What is also characteristic is that the first plot resembles very much a recurrence 
plot for the first differences of the white noise process, whilst the last one is very 
much like a Wiener process. This is very much in line with the fact that longer 
horizon returns converge to Gaussian, as predicted by the central limit theorem 
[6]. The middle plot represents a transition from a short-term (white noise) to a 
long-term (Wiener process) memory process. If we calculated the Hurst 
exponent for these series, the estimates would completely support these 
impressions. These findings, using a different tool set, were also reported by 
Stanley, although in the context of different power laws governing high 
frequency vs. low frequency data [10]. 
 

       
a.   b.              c. 

Figure 5: Recurrence plots for the return series: lag 1 (a), 
lag 100 (b) and lag 1,000 (c) 

 
 
Despite the obvious resemblance of the real life financial time series and a white 
noise process on the one hand and a fractional Brownian motion on the other 
hand, there is always a possibility that the series are not random, but some kind 
of a deterministic model masquerading as random [12]. To explore this 
possibility, we first needed to estimate the appropriate time delays and 
embedding coordinates, and then zoom in on each and every one of the 
recurrence plots. 
 
Before the set of ten NYSE financial series were analysed, we produced an ad 
hoc catalogue for a generic white noise process and a Wiener process presented 
at different levels of the time delays and embedding dimensions. Both processes 
were lagged by 1 and by 1,000 observations before the optimum value of the 
time delay and the embedding dimension for all six time series (three for white 
noise and three for Wiener process) were estimated. The catalogue with 
characteristic visual signature of such a space is briefly outlined in Appendix 1. 
A catalogue for the eight NYSE financial series is given in Appendix 2. 
 



7 VRA plots for financial time series 

The behaviour of all eight financial time series seemed to follow, remarkably 
closely, the behaviour of the two most fundamental types of series, i.e. the white 
noise process and the Wiener process. All the short-term returns, regardless of 
whether the resolution, i.e. minute or daily returns, behaved as a white noise 
process. All the long-term returns, again regardless of the resolution, i.e. minute 
or daily returns, behaved as a proper random walk process (a Wiener process).  
 
In order to discover possible hidden patterns, or the presence of an underlying 
dynamical system, we needed to look closely at these recurrence plots, looking 
for short lines parallel with the identity line, signifying unstable periodic orbits. 
Unfortunately, long term returns do not look promising, i.e. zooming in on a 
‘Rorschach blob’ does not reveal any finer or deeper structure hidden in it. 

However, the short-term returns offer some tentative hope. 

 

As an example we took daily BP short returns and calculated optimal m=60 and 

τ=2 (Fig 6a). After zooming in on the section of this recurrence plot (Fig 6b), we 

can see a number of short lines parallel with the line of identity 
 

      
a.     b. 

Figure 6: BP BP daily returns τ=2, m=60 (a) and magnification 

of a section of Fig. 7a (b) 

 

 

Figs 7a and 7b show similar picture. This is a recurrence plot for PFE single 

minute returns at m=39 and τ=2. These plots indicate a possibility of unstable 

periodic orbits embedded in these time series.  

 

We have to point out that in all these cases (and we are arbitrarily showing only 

two) the lines running in parallel with the identity line are not always as light as 

one would ideally expect them to be, indicating that recurrence is somewhat 

tentative and a little more remote than desirable. 



      
a.     b. 

Figure 7: PFE minute returns τ=2, m=39 (a) and magnification 
of a section of Fig 8.a. (b) 

 
 
The second important point is that these parallel lines do not necessarily describe 
unstable periodic orbits. It is true that in general the short parallel segments 
mirror the deterministic character of the system and indicate the presence of 
unstable periodic orbits embedded in the chaotic attractor of a deterministic 
system [3]. However, at present the idea that short-term stock exchange returns 
could possibly be deterministic systems must remain a speculation. A 
deterministic system might contain non-linear components, but nonlinearity does 
not have to be reflected in a specific data set [7], and vice versa. 
 
Even better explanation is offered by [8] whose interpretation of financial time 
series is that they could be best described as a nonlinear noise driven dynamical 
system far from equilibrium undergoing bifurcation or change in system 
dynamics. The problem with this approach is that although system dynamics can 
be well modelled using nonlinear dynamic modelling, this will not help us to 
produce better predictions. To put it mildly, we are back to square one. 
 

8 Conclusion 

Using several artificially generated time series we explained what patterns are 
likely to be observed in recurrence plots and how they could be catalogued. 
These findings were used to analyse eight real-life stock exchange time series, 
representing the minute and daily returns for four data sets from the NYSE. The 
analysis was extended to include short and long return values. 
 
The long-term returns, for both minute and daily stock values, exhibit behaviour 
very much in line with that expected from a conventional random walk (Wiener 
process or fractional Brownian motion). The short-term returns, again for both 
minute and daily stock values, exhibit behaviour that resembles the white noise 
differences. However, after estimating appropriate time delays and embedding 
dimensions, the short-term return series reveal faint regularities, indicating that 
there is a possibility of some kind of deterministic process driving them. 
However, without testing this hypothesis by one or more rigorous tests, this 



remains a speculation. Nevertheless, visual inspection confirms what other more 
comprehensive studies have alluded to, and that is: a possible presence of 
nontrivial deterministic nonlinearity in data. 
 
Visual recurrence analysis, in the form of coloured recurrence plots, is a 
powerful descriptive tool. It is intuitive, quick and a robust method for 
tentatively classifying and characterising the time series. It can be used as an ad-
hoc tool to set up hypotheses that can, later on, be tested with more rigorous 
tools. 
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Appendices 

     
a.            b. 
Appendix 1. VRA plots for three white noise (a) and Wiener processes (b) with 
optimum time delay level and embedded dimension  
 

    
a.            b. 
Appendix 2. VRA plots for various BP and IBM stock values (a) and Coca Cola 
and Pfizer stock values (b). Plots portray the original time series and the 
embedded time series with appropriate time delay and embedding dimension. 
 
 


