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Abstract 

Time series resume various shapes and exhibit varying dynamics when presented 
as graphs. Partially, this dynamic is measured via the Hurst exponent and a 
related metric, the fractal dimension. Both metrics are not sufficiently sensitive 
to discriminate variations in time series dynamics. To address this need, a non 
parametric indicator, called the Power Coefficient (the PC coefficient) is 
suggested. The coefficient was calculated for a number of artificially generated 
and the real life time series to identify how selective it is. The results indicate 
that, although it is sensitive to the length of the time series, it is far superior to 
the existing metrics. 
Keywords:  Time series analysis, dynamics metrics, the Hurst exponent, the 
fractal dimension, the Power Coefficient, the PC coefficient 

 

1 Introduction 

A time series is a snapshot, contained in a time window, of the historical 
behavioural pattern of the observed variable. Various methods are used as 
descriptive and predictive tools related to time series, and we do not intend to 
focus on them (for further discussion, see Mills [1], Brockwell and Davis [2], 
Dunis [3], Enders [4], Kantz and Schreiber [5]). In order to apply a particular 
method, certain assumptions need to be made. These assumptions are explicitly, 
or implicitly, linked with the properties of the time series. The usual tests, or 



assumptions made, are mainly related to the linearity issues, stationarity, serial 
correlation, process memory and other similar assumptions. Nevertheless, it 
remains the fact that the general appearance of the time series will influence the 
choice of the method. The question associated with this is: how do we measure 
the appearance of the time series? This paper will focus on visual properties of 
time series and will attempt to classify them in accordance with an indicator that 
was specifically designed for such a purpose. 
 

2 Background 

Any conventional textbook in quantitative methods provides a variety of 
descriptive statistics that characterise a data set and which can, by default, be 
applied to time series, which are just one specific form of data sets. However, 
most of these statistics (the mean, variance, skewness, kurtosis, etc.) are fixed 
and applicable to stationary time series. The majority of the real-life time series 
fall into a non-stationary category, rendering effectively these descriptive 
statistics of little value. However, several other attempts were made to 
encapsulate complex time series behaviour into a single coefficient. One of the 
most successful attempts can be linked with the work H. E. Hurst conducted 
towards the middle of the last century in Egypt. 
 
In 1951 Hurst [6] published a seminal paper in which he tried to establish the 
correct storage required in the Great Lakes of the Nile River Basin. His objective 
was to determine the capacity of a reservoir guaranteeing a minimum discharge 
when the water intake is low. To determine the optimum capacity, he examined 
the maxima and minima of a number of reservoirs over a number of periods and 
concluded that there is an optimum range required to maintain the average 
discharge. When this range was measured against different time horizons, he 
discovered strong scaling properties. This scaling property is estimated as the 
slope of the line on a log plot showing the changes in the rescaled range versus 
the number of cases used for the range (Range is a function of deviations from 
the mean. Rescaling the ranges means that they are divided by their appropriate 
standard deviation, i.e. R/σ.). Contrary to his expectation that this slope should 
be equivalent to 0.5 (which would be normal for random events), he discovered 
that the number is around 0.7 (to be precise it is 0.73). In other words, the scaling 
of certain natural phenomena (reservoirs included) does not follow chance, but 
shows an increasing amount of persistence and long process memory.  
 
Benoit Mandelbrot [7] took Hurst’s ideas as a foundation for making a further 
breakthrough in 1965. He renamed the rescale analysis exponent to the Hurst 
exponent and changed its original notation from K, as used by Hurst, to H. More 
importantly, he linked it with the fractal dimension and established that they are 
related as dF  = 2 - H, where df is the fractal dimension. 
 



Mandelbrot established that (in particular for self-afine data sets) the smaller the 
value of the Hurst exponent, the rougher the surface of the curve describing the 
data set. As the Hurst exponent takes values 0<H<1, this implies that for H close 
to zero, the series will closely resemble a white noise process, whilst for H close 
to unity, the series will be still jumping up and down, but with the element of 
persistence built into it. The Hurst exponent, therefore, indicates both how long 
the series memory is and how rough the series is. As Mandelbrot [8] put it “… 
fractional noises with a high value of H are the most violently fluctuating among 
fractional noises.”. Until today the Hurst exponent and the fractal dimension 
remain the only two complementary methods of measuring the roughness of the 
data set and its capacity to fill in the plane.  
 
Although Mandelbrot provided the relationship to estimate the Hurst exponent 
from the fractal dimension (usually it is other way round), it is also possible to 
infer the Hurst exponent from the spectral density exponent β. Spectral densities 
Sx have the approximate value of: 
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Where, f are the frequencies and the exponent β = 2H + 1, provides a link with 
the Hurst exponent. However, there are several problems with calculating the 
Hurst exponent. First of all, the calculation algorithms are quite time-consuming 
and not so easy to implement without introducing some complex looping in the 
code. A very good freeware, called Fractan, for calculating several invariant 
measures, including the Hurst exponent, was created by Vyacheslav Sychyov 
and it is available from: http://impb.psn.ru/~sychyov/html/cv_e.shtml. The 
second point is that the Hurst exponent is not calculated explicitly, it is 
estimated. This fundamentally can cause some difficulties and 
misinterpretations.  
 
As the Hurst exponent is one of the ways of estimating the fractal dimension dF, 
we can say that essentially neither the Hurst exponent nor the fractal dimension 
discriminate enough the appearances of the time series. Essentially, as stated by 
Mandelbrot [7], for time series it is expected that the fractal dimension dF will 
take values between one and two. The closer dF is to one (i.e. the closer H to one 
is), the smoother the line. Conversely, the closer dF is to two (i.e. the closer H to 
zero is), the more dynamic the line is. If the value of dF = 2, we say that the time 
series is equivalent to the white noise process. For the value of dF=1.5 we have a 
special case called ordinary Brownian motion. Any other value of dF indicates 
fractional Brownian motion, i.e. for the values of 1.5<dF<2, the process is anti-
persistent and for the values of 1<dF<1.5, the process is persistent, exhibiting 
long memory (Persistent process implies autocorrelation function following 
exponential decay, whilst anti-persistent process implies negative correlation 



between observations, i.e. every subsequent observation is more likely to go in 
the opposite direction from the previous one rather than follow the trend). 
 
These concepts can also be translated into a visual appearance of a time series. 
The closer the value of H to 1 and the closer the value of dF to 1, the less 
dynamic (erratic) the time series. The closer the value of H to 0 and the closer 
the value of dF to 2, the more dynamic the time series and the more ‘jumpy’ it 
looks. 
 
However, even some elementary experimentation can quickly demonstrate that 
the Hurst exponent and the fractal dimension are not sensitive enough and 
discriminating enough, unless we handle random walks. In addition to this, the 
value of the Hurst exponent has meaningful interpretation only for the random 
processes. For any other type of series it is inconsistent and ambiguous. 
 
Although both coefficients (the Hurst exponent and the fractal dimension) can be 
used to describe some elementary properties of time series, this would constitute 
the most elementary feature descriptor if a time series was used as an element in 
some sort of repository, such as a Case Based Reasoning (CBR) system. 
Unfortunately, the emphasis should be on the word “elementary”, as it is 
impossible to classify time series precisely in accordance with different values of 
the Hurst exponent. The case features have to be of higher resolution in order to 
secure better sensitivity and diagnostic/predictive properties. This paper will 
explore an alternative, a simple and non-parametric method for measuring the 
roughness of a time series. 
 

3 The Power Coefficient (PC) 

To suggest a measure of a time series appearance, we start with intuitive 
reasoning. In a time series the first and the last observation in a data set 
constitute the boundaries of the time window, which characterises certain 
behaviour of the data set. The shortest distance between these two points is a 
smooth, straight line. However, in reality a time series will exhibit some 
dynamics in this observed time window and will seldom follow the straight line. 
Very often, the first and the last observation have no effect on the overall 
behavioural pattern of the variable in this time window. It is more likely that, 
moving from period to period, the actual observations will deviate from the 
shortest path and will, in a way, wander or rumble through the space, creating a 
wiggly curve that characterises the behaviour of this variable in a given time 
window. The amount of curve wiggling will, in a way, show the ‘energy’ of the 
time series. 
 
As the curve wanders, the implication is that the observations will travel certain 
distance which will inevitably be greater that the shortest path that connects the 
end points of the time series. The total distance that the variable will travel in a 



time window is the cumulative value of all the observation differences. Dividing 
it by the number of observations in a data set will give us the average travel 
distance between any two periods for this particular time window. 
 
We can also observe that in a time series, at least one observation will inevitably 
be the maximum value for the given time window. Equally, at least one 
observation will be the minimum value, unless we deal with a horizontal line, in 
which case both the max and the min are the same. If a data set displays 
maximum level of dynamics for the given time window, then it would expect it 
to ‘jump’ from the minimum to maximum and back between any two periods in 
the series. In other words, by jumping up and down from minimum to maximum, 
the series would display maximum possible dynamics, or, maximum amount of 
energy embedded in its character. This means that the difference between the 
maximum and minimum value of the time series is a hypothetical average 
distance that this time series would travel if it had the most dynamic history. 
 
These two values, the actual average distance and the hypothetical average 
distance, can be used to calculate a measure of energy the time series exhibits, 
and we will, therefore, name it tentatively as the Power Coefficient (PC). This 
coefficient is simply calculated as: 
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Where, 
xi = actual observation 
mi = distance between two observations i.e. observation difference mi = xi - xi-1
xmin = minimum value in the time series 
xmax = maximum value in the time series 
ε = arbitrarily small constant 
k = number of observations in an interval, 2 < k < n, (some reasonable number) 
n = total number of observations 
 
The Power Coefficient (PC) will take various values for different patterns and 
theoretically if a variable oscillated from minimum to maximum between any 
two periods, its maximum value is 100. On the other hand, zero is the minimum 
value that the PC will show, which applies to horizontal straight line only. 
Strictly speaking this is not true because in this case both max and min value are 
the same, yielding ∞. To avoid this inconvenience, present only in exceptionally 
small number of cases, an arbitrarily and infinitesimally small constant ε was 
introduced in the denominator.  



 
In order to demonstrate how the value of the PC changes as the dynamics of the 
time series changes, we conducted experiments with 41 different time series. The 
list of all 41 time series and their PC values are given in Table 1. However, 
before we draw any conclusions, we need explain how some of the series were 
generated. 
 

4 Data sets and results 

The PC coefficient was experimentally applied to a number of time series. The 
experiments involved 41 different time series, such as: smooth curves, chaotic 
attractors, artificially generated random walks, periodic curves (sinusoids, see-
saw curves and Wierestrasse curve), periodic curves with added random 
elements, stationary random processes (the white noise and ARCH) and the 
actual time series from the New York Stock Exchange (NYSE). 
 
Four companies were arbitrarily picked from the NYSE, and they are BP, IBM, 
Coca Cola (KO) and Pfizer (PFE). Their daily and minute closing values were 
captured, varying in appearance from the white noise look to a random walk type 
of behaviour. Their returns for both daily and minute stock values were also 
calculated, generating time series that resemble either a white noise, or an ARCH 
process. The returns on closing values of stocks were calculated as: 
 

tΔttt logXlogXR −= +    (3) 
 
Where, Xt are stock values (either daily or minute values) and Δt is the time 
difference (a lag). This implies that for Δt = 1, i.e. for lag 1, we get short term 
returns (i.e. returns after one minute or one day, depending on the resolution of 
the data set) and for larger number of lags, some longer return value is obtained. 
 
As a reference point, the Hurst exponents were also estimated for all 41 data sets 
and their fractal dimensions inferred. Essentially, the fractal dimensions dF fell 
into three characteristic regimes: 
 
1) dF around 1 – All artificially generated random walks, all stock closing values 
(both daily and minute) and most of the smooth curves 
 
2) dF around 1.5 – All stock returns (both daily and minute), Lorenz attractor, 
one smooth curve, see-saw curve with added random component, sunspot 
numbers, the Wierestrass curve and the white noise process 
 
3) dF around 2 – All the sinusoids, MinMax series, ARCH process, Rossler and 
Henon attractor 
 



Visual inspection of the graphs depicting the data sets that fall in the same dF 
category indicates that the fractal dimension (or the Hurst exponent) does not 
discriminate these sufficiently and that it does not provide meaningful clues 
about the fundamental features of every time series, to say the least. The PC 
values, on the other hand, provide much better resolution for this problem. 
 
The results in Table 1 indicate certain tendencies, and we have sorted the values 
in the ascending order of the PC coefficient. For all the smooth curves, the value 
of the PC is always 0.1 (for the horizontal line the value is zero and for all other 
smooth curves the part behind the decimal point depends on the value of the 
constant ε), and for the series number 41, which oscillates between its maximum 
and its minimum value every two periods, the PC is 100, as expected.  
 

Table 1: Calculation of the PC values 
for a number of time series 

No Series Observations PC No Series Observations PC
1 Horizontal Line 1000 0.000 21 Weierestrass curve 6001 2.038
2 Linear Nonstationary Trend 1000 0.100 22 See-Saw nonstationary 114 2.564
3 Power curve 1000 0.100 23 IBM minute returns 5861 3.630
4 Expontial curve 1000 0.100 24 Coca Cola daily returns 8422 3.634
5 Logarithmic curve 1000 0.100 25 IBM daily returns 10404 4.279
6 Coca Cola daily stock value 8423 0.257 26 Pfeizer minute returns 5472 4.568
7 IBM daily stock values 10405 0.306 27 Sunspots avg monthly num 3042 4.840
8 BP daily stock values 6653 0.391 28 Low frequency (LF) sinuso 873 5.561
9 Coca Cola minute stock va 5473 0.398 29 ARCH 5200 6.854

10 Pfeizer daily stock values 5391 0.429 30 Rossler attractor 1000 6.896
11 Random walk 3 8000 0.474 31 Pfeizer daily returns 5390 6.954
12 Random walk 5 8000 0.512 32 Lorenz attractor 1000 7.821
13 Random walk 1 8000 0.589 33 BP daily returns 6652 8.030
14 Random walk 2 8000 0.593 34 See-Saw stationary 1009 11.111
15 BP minute stock values 5458 0.615 35 LF sinusoid with white nois 873 11.520
16 Pfeizer minute stock values 5473 0.687 36 HF sinusoid with white noi 873 15.358
17 US Discount rates (52.8 ye 634 0.740 37 High frequency (HF) sinus 963 16.677
18 Random walk 4 8000 0.795 38 See-Saw stationary + rand 1009 18.507
19 BP minute returns 5457 1.509 39 White noise 1500 33.531
20 Coca Cola minute returns 5472 1.745 40 Henon attractor 1000 38.229

41 MinMax curve 1000 100  
 
In general, the PC coefficients show seven characteristic regimes: 
 
A) PC close to zero – All smooth curves 
 
B) PC between 0 and 1 – All closing stock values and all artificially generated 
random walks 
 
C) PC between 1 and 3 – The Weirestrasse curve, nonstationary see-saw curve 
and two stock minute return series (BP and Coca Cola) 
 
D) PC between 3 and 5 – Majority of the stock return series (Coca Cola and 
IBM daily returns, and IBM and Pfeizer minute returns) 
 
E) PC between 5 and 10 – The Lorenz and Rossler attractor, ARCH process, low 
frequency sinusoids and two daily return stock series (BP and Pfeizer) 



 
F) PC between 10 to 20 – Majority of sinusoids and various see-saw curves 
 
G) PC above 30 – The white noise process and the Henon attractor. MinMax 
series, as an exception, has the maximum value of 100. 
 
Table 1 shows that, for practical reasons, we were not consistent with the sample 
sizes of the analysed data sets and that the lengths vary dramatically. In addition 
to this, some inconsistencies are visible, for example, the nonstationary see-saw 
series seems to be in a completely different category than the other see-saw 
series. It is very likely that the number of observations taken into account play a 
major role. To address this question we briefly explored how sensitive this 
coefficient is to the sample size, i.e. the length of the data set.  
 

5 Sensitivity results 

To explore this issue experimentally, we used only several data sets (see Table 2) 
and calculated their PC values for varying sample sizes. The sample size 1 in 
Table 2 implies that the PC value was calculated for the full length of the given 
time series. The sample size 0.5 means that the series was split into two half and 
the average PC value was calculated on the basis of these two half’s PC values. 
The sample size 0.2 means that the series was split into five sub-samples and the 
average PC value was calculated on the basis of their PC values. And finally, the 
sample size 0.1 means that the series was split into ten sub-samples and the 
average PC value was calculated on the basis of their PC values. 
 
The factors in the table imply that as the sample size goes down, the value of the 
PC goes up. To use an example of the Weirestrass curve, we can see that the 
value of the PC for the whole data set was 2.038. The samples that are ten times 
smaller (column under 0.1), show the value of PC 2.133 larger than the large 
data set, i.e. their estimated PC is 4.349, as opposed to 2.038. 
  
As expected, for stationary random processes (ARCH and white noise) the 
sample size will not affect the value of PC. On the other end of the spectrum, for 
processes with long memory (Wiener process, daily and minute stock values), if 
the sample size is one tenth of what it actually should be, then the PC value 
could be overestimated between 4 to 5 times. For any other process in between 
these two extremes (in this experiment the daily and minute returns and the 
Weirestrasse curve), the overestimation of the PC value in case of a sample that 
is 10% of the actual series, is approximately 2 to 3 times. 
 
We recall from the dF regimes that Rossler and Henon attractors, as well as the 
ARCH process, fell into the same category. By observing the visual appearance 
of these time series we instinctively see that this does not make sense. On the 
other hand according to the PC values, Henon attractor is by far the most 



dynamic, even more dynamic than the white noise, whilst the Lorenz and Rossler 
attractors are clearly in a different league with much lower level of dynamics 
exhibited. This is much more in line with the visual appearance of these time 
series. 
 

Table 2: Factor by which the PC 
value changes as the sample size 
reduces 

No of PC value for Sample size
Series observations all observat. 1 0.5 0.2 0.1
White noise 1500 33.531 1 1.000 0.985 1.001
ARCH 5200 6.854 1 1.000 1.001 1.006
Weierestrass curve 6001 2.038 1 1.000 1.995 2.133
IBM min returns 5861 3.63 1 1.242 1.525 2.635
KO daily returns 8422 3.634 1 1.535 2.354 2.965
PFE min values 5473 0.687 1 1.246 2.253 3.428
Random walk 8000 0.474 1 1.747 2.792 4.084
BP daily values 6653 0.393 1 1.934 3.365 4.842  
 
It is interesting to see how the actual stock values series vs. stock returns series 
were classified. Fractal dimension dF clearly differentiates between the return 
values as opposed to actual stock values. The PC does the same. In fact, the PC 
discriminates between three regimes of returns. Some minute returns fall into the 
same category as the Weirestrasse curve and nonstationary see-saw type of 
curves. Some daily returns are close to chaotic attractors (the PC values close to 
the Lorenz and Rossler attractor). A majority of both minute and daily returns 
fall in the category between these two regimes. 
 

6 Conclusions 

The coefficient we suggested in this paper, the PC coefficient, is a nonparametric 
measure of the dynamics of the time series. It discriminates different time series 
in accordance with the amount of distance the time series travels from first to the 
last observation. For nonstationary time series resembling random walks, the 
coefficient is very sensitive to the length of the series, i.e. number of 
observations. Nevertheless, the coefficient provides a much better classification 
properties than the Hurst exponent and/or the fractal dimension. 
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Nonstationary linear trend

APPENDIX 
Logarithmic curve

Fig 2. Nonstationary liner trend, PC=0.1  Fig 3. Log curve, PC =0.1 
 
 
 
 
 
 
 
 
 
 
 
 

Power curve y=x â Exponential curve y=e âx

Fig 4. Parabola, PC =0.1    Fig 5. Exponential curve, PC =0.1 
 
 
 
 
 
 
 
 
 
 
 
 

US GDP 1947-2002 US Discount Rate 1950-2002

Fig 6. US GDP 1947-2002, PC =0.56  Fig 7. US Discount Rate 1950-2002, PC =0. 74 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 

Random walk 1 Random walk 2

Fig 8. Random curve 1, PC =1.04   Fig 9. Random curve 2, PC =1.13 
 
 

Weierestrass 
 
 
 
 
 
 
 
 
 

Random walk 3

Fig 10. Random curve 3, PC =1.62   Fig 11. Weierestrasse curve, PC =2.03 
 
 

Seesaw 
 
 
 
 
 
 
 
 
 

Random walk 4

Fig 12. Random walk 4, PC =2.19   Fig 13. Nonstationary seesaw curve, PC =2.56 
 
 
 
 
 
 
 
 



 
Monthly mean Sunspot numberRandom walk 4 rescaled s=2 H=0.5 

 
 
 
 
 
 
 
 
 
Fig 14. Rescaled random walk s=2 H=0.5, PC =6.86 Fig 15. Monthly average sunspot number, PC =4.83 
 
 Lorenz (only 1000 observations displayed)
 
 
 
 
 
 
 
 
 
 

Rossler (only 1000 observations displayed)

Fig 16. Rossler attractor, PC =6.86   Fig 17. Lorenz attractor, PC =7.21 
 
 
 
 
 
 
 
 
 
 
 
 

Seesaw - horizontal Seesaw - horizontal + Random +/- 1

Fig 18. Stationary seesaw, PC =10.56  Fig 19. Stationary seesaw + random, PC =10.89 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 

ARCH

Fig 20. ARCH process, PC=11.97   Fig 21. Stationary seesaw + random, PC =14.34 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 22. Stationary seesaw + white noise, PC =19.9 Fig 23. Sinusoid varying amplitude, PC =22.73 
 
 
 
 
 
 
 
 
 
 
 
Fig 24. Sinusoid, PC =30.35   Fig 25. White noise, PC =33.26 
 
 
 
 
 
 
 
 
 

Seesaw - horizontal + Random walk
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Fig 26. Henon attractor, PC =38.44   Fig 27. MinMax movements 0 to 1, PC =100.00 
  
  
 
 
 
 
 
 
 
 
 
Fig 28. MinMax movements 0 to 1(1000 observations displayed) 
 
 

MinMax jumps 0 to 1 (1000 observations displayed)

MinMax jumps 0 to 1 (only 200 observations displayed)Henon (only 500 observations displayed)
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