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Abstract. The method developed and described in this paper departs from the traditional time series analysis 
approach. The starting premise is that a time series can be broken down into a number of characteristic cases, 
each of which potentially holds the key for indicating the value of the subsequent observation. The case that 
constitutes the beginning of the forecasting horizon (the reference case) is compared with all the past cases 
and the best-case match is identified. The differences between the best historical case and the reference case 
are used for predicting the first value in the forecasting horizon. The method is compared with some of the 
most prominent forecasting methods (exponential smoothing and Box-Jenkins ARIMA modelling). To vali-
date behavioural properties of the original series versus the extrapolated values (forecasted series), measure-
ments using the correlation (fractal) dimension are undertaken. 

 
Keywords. Case based approach, time series analysis, pattern recognition, extrapolation, APRE, correlation 
dimension 
 
 

1. Introduction 
 
The subject area of time series analysis and extrapolation has been successfully tackled by a number of 
different approaches. Decomposition [14], exponential smoothing [5] [10] [21], stochastic modelling [4], 
state space modelling [9] [12] and Bayesian models [11], are some of the traditional approaches. More 
contemporary methods have roots in neural networks [16] and fuzzy logic [2] [20] [22], i.e. artificial in-
telligence domain, or genetic algorithms [7]. Pattern recognition as a subset of artificial intelligence also 
contributed to this subject area. The best example for this approach is Singh’s PMRS1 [18], which has 
origins in the paper published by Sket-Motnikar, Pisanski & Cepar [19]. Although the method we de-
scribe in this paper has resemblance to the pattern-imitation method by Sket-Motnikar, Pisanski & Cepar 
and Singh’s PMRS, the APRE method described in this paper has been developed completely independ-
ently. 
 
The common thread that flows through all the above approaches is some sort of a rule approach. An as-
sumption is made that a time series belongs to one of the general processes, or probability distribution is 
assumed, or errors are measured and used as a rule for correction, etc. This paper will attempt to depart 
from this generic approach to time series analysis and introduce a different treatment of time series. 
 
 
2. Possible Alternatives to Rules Approaches 
 
A time series is a snapshot, contained in a time window, of the historical behavioural pattern of the ob-
served variable. The clues about the direction and the dynamics of the future behaviour of the variable are 
hidden in the time series. If a time series represents a historical behavioural pattern, than it inevitably con-
sists of miniature instances that define this pattern. Predictably, these instances could be called cases. 
Every instance, i.e. every case, holds the key for the future behaviour of the time series. In other words, if 
we know the case that currently characterises the variable and there is a precedent case, we can predict 
what the next move is likely to be. 
 
This line of thinking inevitably leads towards the case-based reasoning (CBR) approach to problem solv-
ing. In this paradigm, specific knowledge about the behaviour of the variable is implicitly embedded in 
individual cases. This approach can be successfully deployed for time series extrapolation purposes, but 
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before we define specific interpretation of cases in the time series context, we need briefly to remind our-
selves of some of the starting premises of CBR. 
 
CBR assumes that the library of past cases holds the expertise about the system behaviour, rather than en-
coding this behaviour by a series of rules. If we can identify (match) past cases with the current case, we 
have the foundation for predicting the future outcomes. CBR usually follows the process of retrieving 
similar cases, reusing the retrieved cases, revising the solution and retaining the solution. It is irrelevant 
whether a specific approach to CBR is based on trivial syntactic similarities, or more complex semantic 
ones. The process is the same. 
 
 
3. Definition of Cases in the Time Series Context 
 
In CBR terminology a case is a problem situation [1]. If we split time series into smaller pattern se-
quences, than each and every one of these patterns could be treated as a case. For example, we could 
break the series down into a sequence of three rolling observation patterns. In other words, the last inter-
val in a series of, say, three observations, could contain xn, xn-1 and xn-2, the one before the last one xn-1, xn-

2 and xn-3, and so forth until we reach x3, x2 and x1. 
 
Let us now use a linguistic equivalent to describe the series dynamics and say that every observation in 
the pattern that constitutes the case, in relation to the previous observation, can go up (P for positive 
move), down (N for negative move) or stay on the same level (Z for a zero move)2. This implies that we 
can identify intervals that consist of a series of three-observation patterns, something like PPN, PNN, 
NNZ, NZZ, ZZP, ZPP, etc. Each of these patterns constitutes a case. If we analyse all the identical cases, 
we’ ll probably discover that identical cases are usually followed by a similar move. This gives us the 
foundation to change the paradigm and think about a time series as a case history. 
 
However, because we are dealing with numerical values that form patterns, although multiple cases keep 
on repeating themselves through the series and consist of identical patterns, they exhibit different magni-
tudes. The magnitude (or, the interval length) can be calculated as the cumulative value of all the observa-
tions in an interval. In certain cases cumulative values could apply to differences between observations in 
an interval, or even moving averages of the differences. These options have not been pursued in this paper 
and this remains one of the possibilities for further research. 
 
Returning to the issue of the case formation, we have to say that there is no rigorous method to define 
what a typical case is, in other words, whether consists of only 3 rolling observations, 4, 5 or more. In ac-
cordance with the CBR approach the best way is to suspend judgement and allow the coexistence of dif-
ferent cases. In practical terms this implies forming a library of 3, 4, 5, etc. pattern observations and treat-
ing every group as a case category. For the sake of convenience, to speed up the computing time and 
restrict the storage requirements, we restricted ourselves to a maximum of 12 observations in a pattern. 
As this corresponds with the number of months in a year, the assumption is that cases are also capable of 
detecting seasonal variations. 
 
 
4. Algorithmic Approach to Case Matching in Time Series 
 
Following this logic, we could approach the task of pattern recognition and extrapolation of the time se-
ries with the following algorithm: 
 
1. Break the series down into r-interval patterns consisting of sequential rolling observations. 
2. Store all these interval-patterns as historical cases. 
3. Take the last interval in the series with an arbitrary number of observations in the interval. This inter-

val will constitute the current, i.e. the reference case.  
4. Note the reference case’ s pattern and the measure the magnitude (e.g. the sum of all observations in 

the case).  
5. Retrieve all the cases from the past with the identical pattern to the reference case.  
                                                           
2 P, N and Z are equivalent to Singh’ s binary patterns [18]. 



   

6. Measure the magnitude of the movements (the length) of all these cases.  
7. The retrieved matching case whose length shows the smallest distance from the length of the refer-

ence case can be used for predictions.  
 
The prediction can be implemented in a number of ways. The simplest way is to select the observation 
that follows the closest matching historical case and add it to the reference case. Depending on the sta-
tionary character of the series, other methods can be used. Again, these possibilities are left unexplored in 
this paper. 
 
The above concept of identifying unique patterns (or data strings) is comparable to Algorithmic Informa-
tion Content (AIC) [6]. AIC measures the compressibility of a data string, in other words, a string (or a 
series) of ‘011011011…’ , could be compressed by ‘011’  that is repeated i times. A random series will ex-
hibit very high AIC, whilst low AIC indicates a very predictable curve of a given shape. This implies that 
a low AIC series can be modelled using time as an independent factor (curve fitting, for example). A high 
AIC series can only be modelled by a probabilistic model, where every observation follows some prob-
ability distribution function. However, medium AIC is most difficult to model, and most real-life series 
fall into this category. Most of the medium AIC series can be reasonably successfully modelled by a self-
referential model (autoregressive, for example). However, identification of the correct model can be very 
difficult and could be considered the domain of art, rather that science.  
 
 
5. Forecasting Using the Case Based Approach to Time Series Analysis 
 
Rather than identifying self-referential models, which would take us back to rule based approaches, we’ ll 
propose the notation that would enable us to deploy an algorithm for case based reasoning, as described 
above. We’ ll call this new approach an Algorithmic approach to time series Pattern Recognition and Ex-
trapolation, and we’ ll refer to it as the APRE method. 
 
The variables are defined as follows: 
 
n = number of observations in the series 
xn = the nth observation in the series  
i = total number of cases containing r elements 
r =  number of elements in every case 
ti= specific case 
kq= magnitude, or, the length of every case (sum of all observations) 
dq-r+1= case distance (differences between case magnitudes) 
 
For j=1, … , n-1 we first find differences: 

mj = xj - xj-1     (1) 
 
The letters P, N or Z are assigned according to the value of difference: 
 
     ”P”  mj > 0    

  mj =  ”N” for mj < 0     (2) 
     ”Z”  mj = 0    
 
 
For i = 1, 2, … , (n - r + 1) and  p = i, … , (i + r - 1), let ti,p represent cases with different number of obser-
vation differences: 
      ti,p = {mp}     (3) 
 
For q = r, …  , n we calculated the magnitude for every case: 

kq = ∑
+=

q

q-rj
jx

1

     (4) 

 
As mentioned earlier, in some instances perhaps a better method of calculating kq is: 
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      (4a) 

 
The above effectively means that we have taken moving averages as a magnitude value for every case. 
 
We now select an arbitrary point in the series and declare that the case whose last observation in the pat-
tern coincides with this particular point  is the reference case: 
 

tc,p = {mp}     (5) 
 
Where index c represents the beginning of the ex-post forecasting horizon. 
 
Once we know the value of kc for the reference case, we measure the distances between this case and all 
the historical ones for q = r+1, …  , n: 
 

dq-r+1 = kc – kq-r+1     (6) 
 
However, we only do this for cases that exhibit the same movement pattern as the reference case, i.e. for c 
= 1, …  , (n - r) where: 
 
      tc,p = tn-r,p     (7) 
 
Where the value of dq-r+1 = min, we can take the value of the observation xj+1, succeeding the case tc,p, as 
the optimum for this pattern extrapolation and use it to get the forecast for xn+1. In other words, for dq-r+1 = 
min, 
 

xn+1 = xj+1      (8) 
 
Newly generated observation (forecast) becomes part of the new reference case. This enables us to ex-
trapolate beyond one observation in the future. We continue reusing the cases from the historical period to 
render ex-ante forecasting.  
 
If we took case magnitudes to be the moving averages of the series, then the forecast could take multipli-
cative form, where: 
 
For dq-r+1 = min, dfq-r+1= d*, and the forecast is:  
 

xn+1 = xn × d*     (8a) 
 
However, one has to be very cautious with the approach given in (8a) as it can produce dynamics that are 
far too excessive and can resemble forecasts obtained using a large smoothing constant value in exponen-
tial smoothing methods. As indicated earlier, this option has not been pursued in this paper. 
 
 
6. An Example of the APRE Method 
 
A detailed VB code that was compiled to automate the APRE method3 enabled a comparative evaluation 
of this method vs. several other well-established time series analysis methods. The methods selected for 
comparison were Single, Double and Triple Exponential Smoothing, Holt’ s Two-Parameter Smoothing 
Method, and the Box-Jenkins ARIMA method4. The series selected for analysis was picked virtually ran-
domly from the stock exchange. To make it more interesting, a decision was made to look at the value of 

                                                           
3 The author welcomes any interest in the code (embedded in an Excel spreadsheet) and can be contacted 
via email. 
4 Further in the text the methods are abbreviated as SES, DES, TES, Holt, ARIMA and APRE. 



   

well-known company’ s shares and Microsoft was selected. A five-year period from 9 March 1998 to 14 
October 2002 was chosen. The data represented the closing weekly value of Microsoft shares. 
 
The values of the smoothing constants for the comparison methods were set to: 0.5 for alpha and 0.05 for 
Holt’ s gamma. The autocorrelation and partial autocorrelation analysis showed that Microsoft shares fol-
low the first order autoregressive process, and ARMA (1,0,0) model was used for the Box-Jenkins 
method. For the APRE method, the cases stored cover pattern intervals from 2 to a maximum of 12 mov-
ing observations per case. 
  
The series consists of 240 observations, but the first 120 values were used as a basis for the initial case 
reasoning. Although most of the comparison methods used do not require a training period, to maintain 
consistency the ex-post forecasts were produced for all the methods starting with the period 121. For all 
the methods except SES5, a forecasting horizon of 10 future observations was arbitrarily selected. How-
ever, the errors were considered for only ex-post forecasts from the 121st to the 240th observation. Three 
types of errors were measured, and they were: ME (Mean Error), MAD (Mean Absolute Deviation) and 
MSE (Mean Square Error). The results rendered are given in Fig. 1. 
 
Using the above parameters the APRE method failed to outperform any of the comparison methods. 
However, the three error measurements selected (most often used by the majority of forecasters) only 
measure certain qualities of forecasts. The extrapolation capabilities beyond just one single future obser-
vation of some of these methods are questionable. Even when the forecast is extrapolated further into the 
future, it usually follows just the underlying trend, making it no more valuable than the ordinary trend ex-
trapolation method. From this point of view, the APRE method exhibits qualitatively different 
characteristics. The APRE method has inherent freedom to oscillate as freely as the original series that it 
tries to mimic, nor is series homoscedasticity a requirement. The oscillations are easily extrapolated in the 
future, giving it a unique property to propagate the dynamics of the series and render pulsating ex-ante 
forecasts.  
 

 
Fig. 1. Error comparison and performance ranking between selected forecasting methods 
 
 
Below, Fig. 2 to Fig. 4 demonstrate how well the original Microsoft shares values were approximated and 
show the character (appearance) of all the ex-ante forecasts.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Forecasts using Box-Jenkins approach to ARIMA modelling 
 

                                                           
5 SES can extrapolate only one observation ahead. 

M ethod M E Rank M AD Rank M SE Rank
SES -0.39 5 3.26 4 16.95 3
DE S -0.03 2 2.85 2 15.52 2
Holt -0.05 3 3.25 3 17.51 4
TE S -0.02 1 3.35 5 18.86 5
ARIM A -0.28 4 2.59 1 11.33 1
APRE -0.49 6 3.69 6 21.75 6
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Fig. 3. Forecasts using single (SES), double (DES), triple (TES) exponential smoothing and Holt’ s exponential 
smoothing method 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Forecasts using the APRE method 
 
 
Fig. 5 shows the autocorrelation function for forecasting errors for the APRE method, indicating no serial 
correlation and implying that the algorithm shows no bias.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Autocorrelation values of forecasting errors obtained using the APRE method 
 
As indicated above, extrapolated observations of most of the forecasting methods do not have the same 
‘appearance’  as the original series that they try to approximate. The fundamental question is how to pro-
vide a rigorous measure of the appearance of a time series? 
 
 
7. Measuring the Appearance of Forecasts 
 
Unfortunately the methodology in this area is still somewhat obscure. In the context of fractal measure-
ments, Mandelbrot uses lacunarity [14] as a measure of texture, although there are no rigorous proofs in-
dicating how different levels of lacunarity are related to various patterns. Another approach is to measure 
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the spectral densities but this could lead to further confusion, as it is often difficult, from just a power 
spectrum, to differentiate a random from a deterministic, yet chaotic series. 
 
One of the metrics that could be used is the fractal dimension, and there are numerous ways to measure 
fractal dimension. The Hausdorff-Besicovitch dimension is often equated to fractal dimension, which in-
dicates that some kind of a capacity measurement, such as box-counting method, could be used. However, 
we decided to use the correlation dimension, as it is one of the most rigorous quantifiers of fractal dimen-
sion. We used the Grassberger-Procaccia algorithm [8] for calculating the correlation dimension. 
 
The correlation dimension is calculated as the ratio between the correlation integral and some small dis-
tance that defines the number of pairs of vectors created by the method of delay coordinates (embedding 
dimension)6. It is, in fact, the slope of the logarithmic values of the correlation integral and the logarith-
mic values for different radii (embedding dimension of the recurrence plot) [17]. In a way, the correlation 
dimension quantifies the amount of self-similarity in a chaotic series, where low dimensional chaos is 
present [14]. For random, periodic or quasi-periodic series the correlation dimension will show either in-
teger values or infinity. Chaotic series show a non-integer value greater than 1. It is important to note that 
the correlation dimension does not measure temporal, but spatial properties of the series. 
 
 
8. Final Validation 
 
In order to make further comparisons possible, another extrapolation of the same data set was rendered. 
This forecast started from the 181st observation and 120 new values were generated, i.e. the first 60 were 
ex-post forecasts based on the actual data and the last 60 were based completely on forecasted values pro-
duced by the APRE method. Fig. 6 contains basic statistics taken for this new series and compared with 
the original data. 
 

 Original Microsoft series New series of 120 forecasts 

Mean Value 67.79 56.23 
Variance 299.67 59.49 
Correlation dimension7 1.54 2.07 

  
Fig. 6. Statistical properties of the original and forecasted data set using the APRE method 
 
It is quite evident that some variability exists, i.e. the variance for the forecasted series is much smaller, 
indicating some conservatism in methodology. In the Appendix we separated the original Microsoft series 
into two segments, the first one between the 1st to 120th observation and the second one between the 121st 
and the 240th observation. Various measures are displayed comparing these two segments with the two 
different APRE forecasts (the one between 121st and 250th observation and the other one between 181st 
and 300th observation). It is quite evident that the variations between the original series and the APRE 
method forecasts do not differ more than the internal variations between the first part and the second part 
of the original series. The conclusions are that the Microsoft series exhibits great dynamism and variabil-
ity, and that despite some discrepancies between the original series and the forecasts, APRE method is 
performing quite well and consistently.  
 
The correlation dimensions provide the foundation for some interesting speculations. In general, the cor-
relation dimension provides a measure of complexity for the underlying attractor of the system, but we 
used it here only as a comparative measure between the two series. In this paper we are using it primarily 
as an indication of the texture of the series. The above numbers show that the APRE method forecasts ex-

                                                           
6 Another approach is to think about the correlation integral as the probability of finding a point in the se-
ries within some i-th subcube of phase space which is divided into a number of subcubes of some arbi-
trary side length.  
7 The time delay τ corresponds to the first zero autocorrelation for each series (40 for the original series 
and 15 for the forecast) and the embedding dimensions are selected on the basis of calculating false near-
est neighbours (in both cases the embedding dimension was selected to be 2). 
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hibit similar space-filling capabilities as the original series. In fact, the forecasts show even greater level 
of complexity than the original series. Fig. 7 shows the original series and the 60-observation ex-ante 
forecasting horizon. 
 
Comparing the spectral densities, the autocorrelation and partial autocorrelation functions of the original 
Microsoft series and the APRE forecast, given in the Appendix, demonstrate that these two time series do 
not exhibit great differences in character and that they both belong to the same family of processes. 
 
 
 
 
 
 
 
 
 
 
 
      
 

 
Fig. 7. Long range forecast (60 future observations) using the APRE method 

 
 
 
9. Conclusion 
 
The APRE method departs from the usual rule-based approach to time series analysis and introduces a 
particular form of case-based reasoning. Using the traditional error measurement, the results rendered by 
the APRE method are good but in this particular example somewhat inferior to conventional time series 
analysis methods. Although the method shows reasonable accuracy, the issue of the method’ s precision 
needs to be addressed. Most of the practical time series are of limited length and the number of cases (pat-
terns) that could be identified and stored is limited. This implies that there is more than a strong probabil-
ity that certain reference cases will not find a match, either pattern-wise, or in terms of the case magnitude 
(the value). However, if the historical case pattern is identified, but not the magnitude, a distance between 
the reference case and the historical case can be measured. The probabilities for various instances can be 
calculated and weighted by the distances, which could serve as the foundation for establishing conditional 
probabilities. On this basis, a Bayesian inference could be applied to improve the method’ s precision and 
accuracy. 
 
Despite the fact that there is some room for improvements, the APRE method provides a valid alternative 
to most commonly used rule based or model free methods for time series analysis. The forecasting hori-
zon is not limited by the properties of the method, as with most rule-based methods, but by the richness of 
cases and decision-making context. The ex-ante forecasts produced using the APRE method preserve the 
texture and the complexity of the original data set, making it unique among the methods. 
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Appendix 
 
1. Distribution properties of the full 240 observation long series, the first and the second half of the series, 
APRE generated forecast from the 121st to the 250th observation (10 ex-ante forecasts) and APRE gener-
ated forecast from the 181st to 300th observation (60 ex-ante forecasts). 
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2. Autocorrelation properties of the full 240 observation long series, the first and the second half of the 
series, APRE generated forecast from the 121st to the 250th observation (10 ex-ante forecasts) and APRE 
generated forecast from the 181st to 300th observation (60 ex-ante forecasts). 
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 The first 40 ACF are non-zero. 

Statistic Msoft1_240 Msoft1_120 Msoft121_240 Msoft121_250 Msoft181_300
Mean 67.79 75.18 60.40 60.23 56.23
Standard Error 1.12 1.87 0.78 0.80 0.70
Median 65.34 77.91 60.73 58.94 55.13
Mode 46.06 46.06 60.31 69.56 53.37
Standard Deviation 17.31 20.47 8.53 9.07 7.71
Sample Variance 299.67 418.99 72.73 82.18 59.49
Kurtosis -0.11 -1.02 -0.71 -0.74 -0.83
Skewness 0.72 -0.03 0.02 0.35 0.16
Range 76.54 76.54 38.62 43.21 29.36
Minimum 40.90 40.90 43.38 42.29 41.75
Maximum 117.44 117.44 82.00 85.50 71.11
Sum 16268.93 9021.24 7247.69 7830.13 6747.50
Count 240 120 120 130 120
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3. Partial autocorrelation properties of the full 240 observation long series, the first and the second half of 
the series, APRE generated forecast from the 121st to the 250th observation (10 ex-ante forecasts) and 
APRE generated forecast from the 181st to 300th observation (60 ex-ante forecasts). 
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4. Spectral density properties of the full 240 observation long series, the first and the second half of the 
series, APRE generated forecast from the 121st to the 250th observation (10 ex-ante forecasts) and APRE 
generated forecast from the 181st to 300th observation (60 ex-ante forecasts). 
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Spectral Density of APREforecast121_250

Window: Tukey-Hamming (5)
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Spectral Density of APREforecast181_300
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